Some theorems concerning holomorphic Fourier transforms
نویسندگان
چکیده
منابع مشابه
Twisted Fourier-Mukai transforms for holomorphic symplectic fourfolds
We apply the methods of Căldăraru to construct a twisted FourierMukai transform between a pair of holomorphic symplectic four-folds. More precisely, we obtain an equivalence between the derived category of coherent sheaves on a certain four-fold and the derived category of twisted sheaves on its ‘mirror’ partner. As corollaries, we show that the two spaces are connected by a one-parameter famil...
متن کاملSimilarity theorems for fractional Fourier transforms and fractional Hankel
The significance of the similarity theorem for the fractional Fourier transform is discussed, and the properties of self-similar functions considered. The concept of the fractional Hankel transform is developed for use in the analysis of diffraction and imaging in symmetrical optical systems. The particular case of Fresnel diffraction from a circular aperture is discussed and the effects of the...
متن کاملSome Stability Theorems for Nonharmonic Fourier Series
The theory of nonharmonic Fourier series in L2(-ir,tr) is concerned with the completeness and expansion properties of sets of complex exponentials {e'x"'}. It is well known, for example, that the completeness of the set {e'x"'} ensures that of {e'^"'} whenever 2 lA„ ~~ M»l < oo. In this note we establish two results which guarantees that if {elX"'} is a Schauder basis for l}(—n, it), then [e'^"...
متن کاملSome Theorems concerning Extrema of Brownian Motion With
We often use the notation ( ) to denote either ( ) or ( ). For example, ( )− ( ) denotes any one of ( )− ( ), ( )− ( ), ( )− ( ) and ( )− ( ). A point in R is called a point of local minimum (resp. local maximum) of a sample function if there exists a neighborhood of such that ( ) = ( ) (resp. ( ) = ( )). A point of either local minimum or local maximum is called an extreme-point. The following...
متن کاملOn Some Quantum and Analytical Properties of Fractional Fourier Transforms
Fractional Fourier transforms (FrFT) are a natural one-parameter family of unitary transforms that have the ordinary Fourier transform embedded as a special case. In this paper, following the efforts of several authors, we explore the theory and applications of FrFT, from the standpoints of both quantum mechanics and analysis. These include the phase plane interpretation of FrFT, FrFT’s role in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1987
ISSN: 0022-247X
DOI: 10.1016/0022-247x(87)90056-4